Abstract

In this paper, we consider the problem of predictor design for nonlinear systems in the presence of unknown time-varying input-delays. A cascade integral high-gain predictor is proposed to estimate the future state. With a distinctive structure, the predictor can handle unknown delays and eliminate the “peaking phenomenon” during the transient period. Then, a predictor-based output feedback control is designed to guarantee the boundedness of system states. Lyapunov-Krasovskii functional and perturbation theories are used to prove the convergence of the estimation error and the closed-loop system. Finally, simulation results illustrate the superior performance of the cascade integral predictor compared to the standard high-gain predictor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.