Abstract

Developing photo-induced cascade cyclization of alkene-tethered acylsilanes is challenging, because acylsilanes are unstable under light irradiation. Herein, we report that the energy transfer from excited acylsilanes to a photocatalyst that possesses lower triplet energy can inhibit the undesired decomposition of acylsilanes. With neutral Eosin Y as the photocatalyst, an efficient synthesis of cyclopentanol derivatives is achieved with alkene-tethered acylsilanes and allylic sulfones. The reaction shows broad substrate scope and the synthetic potential of this transformation is highlighted by the construction of cyclopentanol derivatives which contain fused-ring or bridged-ring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.