Abstract

Molecular property prediction is a significant requirement in AI-driven drug design and discovery, aiming to predict the molecular property information (e.g. toxicity) based on the mined biomolecular knowledge. Although graph neural networks have been proven powerful in predicting molecular property, unbalanced labeled data and poor generalization capability for new-synthesized molecules are always key issues that hinder further improvement of molecular encoding performance. We propose a novel self-supervised representation learning scheme based on a Cascaded Attention Network and Graph Contrastive Learning (CasANGCL). We design a new graph network variant, designated as cascaded attention network, to encode local-global molecular representations. We construct a two-stage contrast predictor framework to tackle the label imbalance problem of training molecular samples, which is an integrated end-to-end learning scheme. Moreover, we utilize the information-flow scheme for training our network, which explicitly captures the edge information in the node/graph representations and obtains more fine-grained knowledge. Our model achieves an 81.9% ROC-AUC average performance on 661 tasks from seven challenging benchmarks, showing better portability and generalizations. Further visualization studies indicate our model's better representation capacity and provide interpretability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.