Abstract

Close planetary encounters play an important role in the evolution of the orbits of small Solar system bodies and are usually studied with the help of numerical integrations. Here we study close encounters in the framework of an analytic theory, focusing on the so-called b-plane, which is the plane centred on the planet and perpendicular to the planetocentric velocity at infinity of the small body. As shown in previous papers, it is possible to identify the initial conditions on the b-plane that lead to post-encounter orbits of given semimajor axis. In this paper we exploit analytical relationships between b-plane coordinates and pre-encounter orbital elements and compute the probability of transition to these post-encounter states, and numerically check the validity of the analytic approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.