Abstract

Starting from the Polyakov action we consider two distinct Carroll limits in target space, keeping the string worldsheet relativistic. The resulting magnetic and chiral Carroll string models exhibit different symmetries and dynamics. Both models have an infinite dimensional symmetry algebra with Carroll symmetry included in a finite dimensional subalgebra. For the magnetic model, this is the so-called string Carroll algebra. The chiral model realises an extended version of the string Carroll algebra. The magnetic model does not have any transverse string excitations. The chiral model is less restrictive and includes arbitrary left-moving modes that carry transverse momentum but do not contribute to the energy in target space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.