Abstract

Inhomogeneous local minority-carrier transport in thin-film solar cells is a critical aspect for the device operation. In this work, we applied a transport imaging (TI) technique to the intra- and inter-grain carrier-transport properties of cadmium telluride (CdTe) solar cell materials. We compared the TI results with cathodoluminescence and electron backscatter diffraction (EBSD) on the same CdTe thin film. The diffusion lengths of two distinct grain interiors were measured directly, and the values are significantly different. Three types of grain boundaries (GBs) determined by EBSD were studied by TI, and they have different decays, suggesting that different GB structure can be responsible for carrier-transport properties. Further, we did a 2D analytical simulation of carrier diffusion across GBs with varying GB lifetimes. The results suggest that GB lifetimes affect the carrier transport. Comparison of multiple technique results, together with numerical simulation, provides a deeper understanding of carrier-transport properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.