Abstract

In this study, the carrier transport and viscosity of 2,3,6,7,10,11-hexaoctyloxytriphenylene (C8OTP) have been studied by a time-of-flight method and a rotation viscometer. One-anion and two-cation transport was observed in the isotropic liquid phase, whereas the ambipolar electronic and one-anion transport was observed in the columnar mesophase. The activation energies for the ionic conductions in the isotropic liquid phase and columnar mesophase were 0.3 and 0.3 eV, respectively. The viscosity of C8OTP was investigated in the isotropic liquid phase and the activation energy was 0.4 eV. The Stokes radii of ionic carriers were experimentally estimated using Walden's rule. The Stokes radii for one anion and two cations were approximated to be 1, 2, and 8 Å, respectively. The Stokes radius of 8 Å for the larger cation represented the molecular size of C8OTP itself, assuming that C8OTP is a flat spheroid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.