Abstract
A top-gated graphene FET with an ultralow 1/f noise level of 1.8 × 10-12 μm2Hz1- (f = 10 Hz) has been fabricated. The noise has the least value at Dirac point, it then increases fast when the current deviates from that at Dirac point, the noise slightly decreases at large current. The phenomenon can be understood by the carrier-number-fluctuation induced low frequency noise, which caused by the trapping-detrapping processes of the carriers. Further analysis suggests that the effect trap density depends on the location of Fermi level in graphene channel. The study has provided guidance for suppressing the 1/f noise in graphene-based applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.