Abstract

We investigated the structural and optical properties of GaAs1−xSbx/GaAs heterostructures grown by molecular beam epitaxy on GaAs (001) substrates for Sb concentration up to 12% by means of high-resolution X-ray diffraction and photoluminescence. The correlation between our structural and optical analysis revealed that compositional fluctuations induced localized states which trap carriers at low temperature. Under low excitation power, the photoluminescence (PL) spectra are composed of two competing peaks in the temperature range of 30–80 K. The lower energy peak is associated with transitions from localized states in the band-tail of the density of states while the higher energy peak corresponds to transitions from free carriers. A model based on a redistribution process of localized excitons was used to reproduce the S-shape behavior of the temperature dependent PL. Reducing the growth temperature from 500 °C to 420 °C suppressed the S-shape behavior of the PL indicating a reduction in compositional variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.