Abstract

AimsDespite the presence of endogenous antioxidants in erythrocytes, these cells are highly susceptible to oxidative damage and some exogenous antioxidants, such as carotenoids, are able to inhibit the pro-oxidant effect provided by reactive oxygen species. In this study, we evaluated the potential of carotenoids usually detected in human blood plasma (β-carotene, zeaxanthin, lutein, β-cryptoxanthin and lycopene) to prevent the oxidative damage in erythrocytes. Main methodsHuman erythrocytes were subjected to induced oxidative damage and the following biomarkers of oxidative stress were monitored: lipid peroxidation [induced by tert-butyl hydroperoxide (tBHP) or by 2,2′-azobis (2-methylpropionamidine) dihydrochloride (AAPH)] and AAPH-induced oxidation of hemoglobin and depletion of glutathione. Key findingsWhen tBHP was used to induce lipid peroxidation, lycopene was the most efficient carotenoid (IC50=2.2±0.4μM), while lutein was the most efficient (IC50=2.5±0.7μM) when peroxyl radicals (ROO) were generated by AAPH. In relation to the hemoglobin oxidation induced by AAPH, β-carotene and zeaxanthin were the most efficient antioxidants (IC50=2.9±0.3μM and 2.9±0.1μM, respectively). Surprisingly β-cryptoxanthin and lycopene did not inhibit hemoglobin oxidation or lipid peroxidation when induced by AAPH, even at the highest tested concentration (3μM). Additionally, the tested carotenoids did not prevent ROO-mediated GSH depletion and GSSG formation probably due to the lack of interaction between carotenoids (apolar) and glutathione (polar). SignificanceOur study contributes with important insights that carotenoids may exert therapeutical potential to act as a natural antioxidant to prevent ROO-induced toxicity in human erythrocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.