Abstract

l-Carnitine plays a well-documented role in eukaryotic energy homeostasis by acting as a shuttling molecule for activated acyl residues across intracellular membranes. This activity, supported by carnitine acyl-transferases and transporters, is referred to as the carnitine shuttle. However, several pleiotropic and often beneficial effects of carnitine in humans have been reported that appear to be unrelated to shuttling activity, but little conclusive evidence regarding molecular mechanisms exists. We have recently demonstrated a role of carnitine, independent of the carnitine shuttle, in yeast stress protection. Here, we show that carnitine specifically protects against oxidative stress caused by H(2)O(2) and the superoxide-generating agent menadione. Surprisingly, carnitine has a detrimental effect on survival when combined with thiol-modifying agents. Central elements of the oxidative stress response, specifically the transcription factors Yap1p and Skn7p, are shown to be required for carnitine's protective effect, but several downstream effectors are dispensable. A DNA microarray-based analysis identifies Cyc3p, a cytochrome c heme lyase, as being important for carnitine's impact during oxidative stress. These findings establish a direct genetic link to a carnitine-related phenotype that is independent of the shuttle system and suggests that Saccharomyces cerevisiae should provide a useful model for further elucidation of carnitine's physiological roles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.