Abstract

In the heart, mutations in the TPM1 gene encoding the α-isoform of tropomyosin lead, in particular, to the development of hypertrophic and dilated cardiomyopathies. We compared the effects of hypertrophic, D175N and E180G, and dilated, E40K and E54K, cardiomyopathy mutations in TPM1 gene on the properties of single actin-myosin interactions and the characteristics of the calcium regulation in an ensemble of myosin molecules immobilised on a glass surface and interacting with regulated thin filaments. Previously, we showed that at saturating Ca2+ concentration the presence of Tpm on the actin filament increases the duration of the interaction. Here, we found that the studied Tpm mutations differently affected the duration: the D175N mutation reduced it compared to WT Tpm, while the E180G mutation increased it. Both dilated mutations made the duration of the interaction even shorter than with F-actin. The duration of the attached state of myosin to the thin filament in the optical trap did not correlate to the sliding velocity of thin filaments and its calcium sensitivity in the in vitro motility assay. We suppose that at the level of the molecular ensemble, the cooperative mechanisms prevail in the manifestation of the effects of cardiomyopathy-associated mutations in Tpm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.