Abstract
In recent years, high-density microelectrode arrays (HD-MEAs) have emerged as a valuable tool in preclinical research for characterizing the electrophysiology of human induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs). HD-MEAs enable the capturing of both extracellular and intracellular signals on a large scale, while minimizing potential damage to the cell. However, despite technological advancements of HD-MEAs, there is a lack of effective data-analysis platforms that are capable of processing and analyzing the data, particularly in the context of cardiac arrhythmias and drug testing. To address this need, we introduce CardioMEA, a comprehensive data-analysis platform designed specifically for HD-MEA data that have been obtained from iPSCCMs. CardioMEA features scalable data processing pipelines and an interactive web-based dashboard for advanced visualization and analysis. In addition to its core functionalities, CardioMEA incorporates modules designed to discern crucial electrophysiological features between diseased and healthy iPSC-CMs. Notably, CardioMEA has the unique capability to analyze both extracellular and intracellular signals, thereby facilitating customized analyses for specific research tasks. We demonstrate the practical application of CardioMEA by analyzing electrophysiological signals from iPSC-CM cultures exposed to seven antiarrhythmic drugs. CardioMEA holds great potential as an intuitive, userfriendly platform for studying cardiac diseases and assessing drug effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.