Abstract

Cardiolipin, a signature phospholipid of mitochondria, is predominantly present in the mitochondrial inner membrane and plays an important role in keeping optimal mitochondrial function. In addition to the cardiolipin content, the composition of four fatty acid chain is thought determine cardiolipin biological function. These acyl chains of cardiolipin are dynamically remodeled via tafazzin, monolysocardiolipin acyltransferase, and acyl-CoA lysocardiolipin acyltransferase especially in the heart under pathological conditions. The major species of cardiolipin in the normal heart, tetralinoleoyl cardiolipin, is dramatically decreased in the diabetic heart, but other species, typically those containing long fatty acyl chains, are increased. This remodeling of cardiolipin has detrimental effects on mitochondrial function and thereafter cardiac function. Approaches for manipulating cardiolipin acyl chains have been examined including via molecular biology and through supplementation of linoleic acid. The efficiency of cardiolipin remodeling and functional improvement is still under investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.