Abstract
Incorrect ECG gating of cardiac magnetic resonance (CMR) acquisitions can lead to artefacts, which hampers the accuracy of diagnostic imaging. Therefore, there is a need for robust reconstruction methods to ensure high image quality. In this paper, we propose a method to automatically correct motion-related artefacts in CMR acquisitions during reconstruction from k-space data. Our method is based on the Automap reconstruction method, which directly reconstructs high quality MR images from k-space using deep learning. Our main methodological contribution is the addition of an adversarial element to this architecture, in which the quality of image reconstruction (the generator) is increased by using a discriminator. We train the reconstruction network to automatically correct for motion-related artefacts using synthetically corrupted CMR k-space data and uncorrupted reconstructed images. Using 25000 images from the UK Biobank dataset we achieve good image quality in the presence of synthetic motion artefacts, but some structural information was lost. We quantitatively compare our method to a standard inverse Fourier reconstruction. In addition, we qualitatively evaluate the proposed technique using k-space data containing real motion artefacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.