Abstract
Pulmonary arterial hypertension (PAH) is a disease of the pulmonary vasculature characterized by vasoconstriction and vascular remodeling leading to a progressive increase in pulmonary vascular resistance (PVR). It is becoming increasingly recognized that it is the response of the right ventricle (RV) to the increased afterload resulting from this increase in PVR that is the most important determinant of patient outcome. A range of hemodynamic, structural, and functional measures associated with the RV have been found to have prognostic importance in PAH and, therefore, have potential value as parameters for the evaluation and follow-up of patients. If such measures are to be used clinically, there is a need for simple, reproducible, accurate, easy-to-use, and noninvasive methods to assess them. Cardiac magnetic resonance imaging (CMRI) is regarded as the "gold standard" method for assessment of the RV, the complex structure of which makes accurate assessment by 2-dimensional methods, such as echocardiography, challenging. However, the majority of data concerning the use of CMRI in PAH have come from studies evaluating a variety of different measures and using different techniques and protocols, and there is a clear need for the development of standardized methodology if CMRI is to be established in the routine assessment of patients with PAH. Should such standards be developed, it seems likely that CMRI will become an important method for the noninvasive assessment and monitoring of patients with PAH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.