Abstract

Cardiac glycosides inhibit Na+ /K+ -ATPase and are used to treat heart failure and arrhythmias. They can induce inflammasome activation and pyroptosis in macrophages, suggesting cytotoxicity, which remains to be elucidated in human tissues. To determine the cell-type specificity of this cytotoxicity, we used human monocyte-derived macrophages and non-adherent peripheral blood cells from healthy donors, plus omental white adipose tissue, stromal vascular fraction-derived pre-adipocytes and adipocytes from obese patients undergoing bariatric surgery. All these cells/tissues were treated with nanomolar concentrations of ouabain (50, 100, 500 nM) to investigate the level of cytotoxicity and the mechanisms leading to cell death. In white adipose tissue, we investigated ouabain-mediated cytotoxicity by measuring insulin sensitivity, adipose tissue function and extracellular matrix deposition ex vivo. Ouabain induced cell death through pyroptosis and apoptosis, and was more effective in monocyte-derived macrophages compared to non-adherent peripheral blood mononuclear cell populations. This cytotoxicity is dependent on K+ flux, as ouabain causes intracellular depletion of K+ and accumulation of Na+ and Ca2+ . Consistently, the cell death caused by these ion imbalances can be rescued by addition of potassium chloride to human monocyte-derived macrophages. Remarkably, when white adipose tissue explants from obese patients are cultured with nanomolar concentrations of ouabain, this causes depletion of macrophages, down-regulation of type VI collagen levels and amelioration of insulin sensitivity ex vivo. The use of nanomolar concentration of cardiac glycosides could be an attractive therapeutic treatment for metabolic syndrome, characterized by pathogenic infiltration and activation of macrophages. This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.