Abstract

The neural cell adhesion molecule (NCAM) and its polysialic acid moeity (PSA) affect cellular interactions during the development of the nervous system and skeletal muscle. NCAM has also been identified in the embryonic heart of various species including humans. However, knowledge regarding the role of NCAM and its function-modulating PSA in cardiogenesis is limited. The distribution of NCAM and its PSA in the ventricular myocardium of chicken embryos was determined by indirect immunofluorescence staining. The NCAM polypeptide was found throughout the cardiac myocardium. In contrast PSA was located in discrete regions in stage 20 to 44 embryos (during and after septation). Myocardium at the subendocardial regions of the atrioventricular canal and ventricular trabeculae were PSA positive by stage 20. At later stages, transverse sections of the postseptation heart just below the level of the atrioventricular interface revealed a PSA-positive bundle of myocardium in the septum. This bundle was continuous with two branches at a more apical level which in turn were continuous with the PSA-positive subendocardial myocardium lining the left and right ventricles. This pattern of PSA in the myocardium was similar to that of the ventricular conduction system configuration defined in the adult heart. Electron micrographs of the subendocardium of the ventricular septum revealed PSA positivity on myofibril-containing cells with the ultrastructural location of Purkinje fibers. At later stages (35-44) a subset of cells within PSA-positive regions was stained by an antibody against an isoform of the myosin heavy chain found in adult Purkinje fibers. These cells and surrounding tissue lacked PSA in the adult heart. Thus polysialylated NCAM may be modulating cell-cell interactions during the development of the ventricular conduction system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.