Abstract
A bio-based phosphorus-containing benzoxazine monomer (CBz) was successfully synthesized through the reaction between cardanol and DOPO-based diamine. In order to simultaneously improve the toughness and flame retardancy of epoxy resin (EP), various contents of CBz in combination with boron-doped graphene (BG) nanosheets were incorporated into EP to obtain boron-doped graphene/cardanol derived benzoxazine-epoxy composites (EP/CBz/BG). By comparison, cardanol derived benzoxazine-epoxy co-polymers (EP/CBz) were also fabricated. Results show that the addition of the as-prepared CBz into EP not only endowed EP with excellent flame retardancy, but also improved the glass transition temperature and impact strength. Specifically, the peak heat release rate of EP composite with 13 wt% CBz and 2 wt% BG decreased by 48% compared to that of neat EP, accompanying with an increase of impact strength by 22%. These favorable features of EP/CBz/BG composites are attributed to the unique structure of CBz and high resistance to thermal decomposition of BG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.