Abstract

By using a conventional spectrophotometric assay with hippuryl-L-phenylalanine as the substrate, 10(6) BALB/c mouse serosal mast cells possessed 1.5 +/- 0.43 U (mean +/- SE, n = 5, range = 0.48 to 2.5) of carboxypeptidase A activity, while T cell factor-dependent, mouse bone marrow-derived mast cells (BMMC) had barely detectable levels of 0.01 +/- 0.001 U/10(6) cells (mean +/- SE, n = 3). In order to characterize the carboxypeptidase A present in the BMMC, a sensitive assay was developed that used angiotensin I as the substrate and reverse phase-high performance liquid chromatography to separate and quantify production of the cleavage product des-leu-angiotensin I. Using this assay, mouse BMMC carboxypeptidase A had a neutral to basic pH optimum and hydrolyzed angiotensin I with a Km of 0.78 mM. The antigen-induced net percent release of carboxypeptidase A from IgE-sensitized BMMC was proportional to that of the secretory granule component beta-hexosaminidase which indicates a secretory granule location for the exopeptidase. As defined by exclusion during Sepharose CL-2B chromatography, carboxypeptidase A was exocytosed as a greater than 1 X 10(7) m.w. complex bound to proteoglycans. Because BMMC cocultured with mouse skin-derived 3T3 fibroblasts are known to undergo an increase in histamine content and biosynthesis of 35S-labeled heparin proteoglycans, carboxypeptidase A activity was measured during BMMC/fibroblast coculture for 0 to 28 days. The carboxypeptidase A activity increased progressively during 28 days of co-culture from 0.004 +/- 0.002 U/10(6) starting BMMC (mean +/- SE, n = 3) to 0.36 +/- 0.10 U/10(6) co-cultured mast cells. These findings indicate that carboxypeptidase A, a neutral protease, is exocytosed from the secretory granules of mouse mast cells bound to proteoglycan and is increased during the in vitro differentiation of mouse BMMC from mucosal-like mast cells to serosal-like mast cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.