Abstract

In this study, a new type of biodegradable, injectable, self-healing, and low-toxic CMCSH, formed by N, O-carboxymethyl chitosan-heparin (CMCS-Hep) and carboxymethyl cellulose-aldehyde (CMC-A), was designed to deliver drug for promoting the progress of the diabetic wound healing. CMCS was modified with Hep for the first time to synthesize CMCS-Hep, and CMC-A was synthesized by the periodate oxidation method. First, SOD encapsulated in the CMCSH was applied to the diabetic wound bed to moderate the microenvironment, then rhEGF retained in the CMCSH was sustainedly released to the wound area. These results indicated that the dual-drug delivery system had the ability to improve drug availability, promote cell migration and proliferation, reduce DNA damage, shorten the inflammatory period, and accelerate the deposition of collagen fibers and the formation of blood vessels in the model with diabetic skin injury, suggesting that CMCSH as drug carriers had positive effects on diabetic wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.