Abstract
In proteins, glutamate (Glu) residues are transformed into γ-carboxyglutamate (Gla) residues in a process called carboxylation. The process of protein carboxylation catalyzed by γ-glutamyl carboxylase is deemed to be important due to its involvement in biological processes such as blood clotting cascade and bone growth. There is an increasing interest within the scientific community to identify protein carboxylation sites. However, experimental identification of carboxylation sites via mass spectrometry-based methods is observed to be expensive, time-consuming, and labor-intensive. Thus, we were motivated to design a computational method for identifying protein carboxylation sites. This work aims to investigate the protein carboxylation by considering the composition of amino acids that surround modification sites. With the implication of a modified residue prefers to be accessible on the surface of a protein, the solvent-accessible surface area (ASA) around carboxylation sites is also investigated. Radial basis function network is then employed to build a predictive model using various features for identifying carboxylation sites. Based on a five-fold cross-validation evaluation, a predictive model trained using the combined features of amino acid sequence (AA20D), amino acid composition, and ASA, yields the highest accuracy at 0.874. Furthermore, an independent test done involving data not included in the cross-validation process indicates that in silico identification is a feasible means of preliminary analysis. Additionally, the predictive method presented in this work is implemented as Carboxylator ( http://csb.cse.yzu.edu.tw/Carboxylator/ ), a web-based tool for identifying carboxylated proteins with modification sites in order to help users in investigating γ-glutamyl carboxylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.