Abstract

Tetrabutylammonium carbonate (TBAC) which is obtained by treating CO2 with tetrabutylammonium hydroxide is shown to perform as an ideal difunctional initiator for the copolymerization of carbon dioxide (CO2) and propylene oxide (PO) in the presence of triethylborane (TEB). In this system, CO2 thus serves as the initiating moiety of its own copolymerization with epoxides when used in the form of a carbonate salt. Based on this remarkable result, mono-, tri-, and tetrafunctional ammonium carboxylate initiators and also other difunctional carboxylate initiators were synthesized and used for the synthesis of well-defined ω-hydroxyl-polycarbonates with linear and star structures. Well-defined telechelics, three- and four-armed star samples of molar mass varying from 1 kg/mol to 10 kg/mol, with around 95% carbonate content, were successfully synthesized. The structure of the obtained polycarbonate ω-polyols were characterized by 1H NMR, MALDI-TOF, and GPC. The terminal hydroxyl functionality of polycarbonate diol was further used for polycondensation with diisocyanates to afford polyurethanes. Finally, taking TBAC as an example, the recyclability of this ammonium-based initiator is demonstrated for the preparation of polycarbonate diols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.