Abstract

Uniform sodium-dysprosium double molybdate (NaDy(MoO4)2) nanoparticles having different morphologies (spheres and ellipsoids) and tunable size have been synthesized for the first time in literature. The procedure is based on a homogeneous precipitation process at moderated temperatures (≤220 °C) from solutions containing appropriated precursors dissolved in ethylene glycol-water mixtures, in the absence (spheres) or the presence (ellipsoids) of tartrate anions. The effects of the morphological characteristics (size and shape) of the nanoparticles on the magnetic relaxivity at high field (9.4 T) have been evaluated finding that the latter magnitude was higher for the spheres than for the ellipsoids, indicating their better suitability as contrast agents for high-field magnetic resonance imaging. Such nanoparticles have been successfully coated with polymers bearing carboxylate functional groups through a layer-by-layer process, which improves the colloidal stability of the nanoparticles in physiological media. It has been also found that the coating layer had no significant effects on the nanoparticles relaxivity and that such coated nanoparticles exhibited a high biocompatibility and a high chemical stability. In summary, we have developed NaDy(MoO4)2 based bioprobes which meet the required criteria for their use as contrast agents for high-field magnetic resonance imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call