Abstract

One-pot reactions of an asymmetric carboxy-ether-phenol based Schiff base H2L (2-((2-hydroxy-3-methoxybenzylidene)amino)benzoic acid) with selected Ln(NO3)3·nH2O and [Co2(μ-OH2)(O2CCMe3)4(HO2CCMe3)4] (Co2-Piv) in basic MeOH medium resulted in a family of three octanuclear complexes, [CoII4LnIII4L4(μ1,3-Piv)4(μ1,1,3-Piv)2(η1-Piv)2(μ3-OH)4(MeOH)2]·mMeOH·nH2O (Ln = Dy; m = 3, n = 1 (1), Ho; m = 4, n = 0 (2), Yb; m = 3, n = 1 (3)). The coordination aggregates thus obtained were nicely sustained by four ligand anions and eight externally added carboxylate anions showing three different modes of intermetallic connectivity. The options for incorporating different 4f ions in an investigative synthesis, without altering the resulting intermetallic core structure, were successful for the three representative examples. Single-crystal X-ray diffraction studies revealed that the compounds are isostructural and built from two initially formed partial dicubane-type Co2Ln2L2 units. In each of the tetranuclear parts, the metal ion centers are held together by two L2-, two μ3-HO-, three Piv- bridges, one terminal Piv-, and one terminal MeOH. Four carboxylate ends of four L2- units are responsible for connecting two Co2Ln2 units into octanuclear structures. The unique distortion around the CoII centers is achieved from the facile coordination of bigger 4f ions to the adjacent hard OO sites. The distortion is further maintained by the presence of terminal COO- groups from L2-. The dc magnetic susceptibility data revealed ferromagnetic coupling between the CoII and LnIII centers within the series, whereas the ac magnetic susceptibility measurements identified only 1, having a highly anisotropic DyIII ion, as a single-molecule magnet in the absence of any external magnetic field, with an energy barrier Ueff of 12.5 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.