Abstract

Pulse radiolysis experiments published several years ago (J. Phys. Chem. A, 2002, 106, 2430) raised the possibility that the carbonate radical formed from reaction of *OH radicals with either HCO(3)(-) or CO(3)(2-) might actually exist predominantly as a dimer form, for example, *(CO(3))(2)(3-). In this work we re-examine the data upon which this suggestion was based and find that the original data analysis is flawed. A major omission of the original analysis is the recombination reaction *OH + *CO(3)(-) --> HOOCO(2)(-). Upon reanalysis of the published data for sodium bicarbonate solutions and analysis of new transient absorption data we are able to establish the rate constant for this reaction up to 250 degrees C. The mechanism for the second-order self-recombination of the carbonate radical has never been convincingly demonstrated. From a combination of literature data and new transient absorption experiments in the 1-400 ms regime, we are able to show that the mechanism involves pre-equilibrium formation of a C(2)O(6)(2-) dimer, which dissociates to CO(2) and peroxymonocarbonate anion: *CO3(-)+*CO3(-)<-->C2O6(2-)-->CO2+O2COO(2-) *CO3(-) reacts with the product peroxymonocarbonate anion, producing a peroxymonocarbonate radical *O2COO(-), which can also recombine with the carbonate radical: *CO3(-)+CO4(2-)-->*CO4(-)+CO3(2-) *CO3(-)+CO4(-)-->C2O7(2-).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.