Abstract

In regard to identify the compositions of urinary stones, the infrared spectra is a contemporary routine method. However, it is difficult to detect the absorption of carbonate in struvite stone by infrared spectra, because NH4 absorption of magnesium ammonium phosphate overlaps CO3 absorption of carbonate at 1420-1435 cm-1. With the purpose of demonstrating the existence of carbonate in struvite stones, the analysis of these stones by means of Raman spectra has been tried. Forty urinary stones, the chemical compositions of which were previously determined by infrared spectroscopy, were submitted to Raman spectrum analysis, and subsequently to analysis by x-ray diffraction. Thirty of 40 urinary stones were found to be composed of struvite and of mixed struvite-calcium oxalate by infrared analysis. Twelve of these stones were shown to have Raman spectra of magnesium ammonium phosphate, and the other stones to have spectra of apatite. By x-ray diffraction magnesium ammonium phosphate crystals were detected in 25 of these struvite stones and hydroxyl-apatite in another 3, and 2 cases were undeterminable. For other components, such as calcium oxalate, uric acid and cystine, the analytical results of infrared spectra coincided with those of Raman spectra and x-ray diffraction. Carbonate was detected in only a part of one struvite stone by Raman spectra. Above-mentioned results may indicate that carbonate is only a minor component of urinary stones. Therefore, most of 1420-1435 cm-1 bands on the infrared spectra of struvite stones do not indicate CO3 absorption of carbonate, but NH(4) absorption of magnesium ammonium phosphate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.