Abstract

A significant portion of the Earth’s carbon is in forested terrestrial ecosystems. Carbon fluxes to and from these ecosystems in response to climate change have the potential to alter global climate. To understand how forest carbon budgets may be affected by climate, we observed patterns of carbon storage, forest structure, and composition in Scots pine forest ecosystems at nine sites along a northern latitudinal gradient (50–70°N) crossing Poland, Lithuania, Latvia, Estonia, and Finland. This gradient is characterized by a northward decline in average annual temperature (Δ = ca. 9°C) and precipitation (Δ = ca. 300 mm). Total ecosystem carbon, decomposition rates, and litterfall amounts all decreased nonlinearly with increasing latitude. Plant species richness in the ground flora also decreased with increasing latitude. However, the percent cover of lower canopy vegetation varied asystematically with respect to latitude, temperature, or precipitation. Our results are largely consistent with models and analyses indicating that northern latitude forests may respond to predicted climate changes with increased carbon sequestration. In the short term, however, these forests may be a source rather than a sink for atmospheric carbon as the relative distribution of C among ecosystem components adjusts in response to changing climatic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.