Abstract

Flexible supercapacitors (SCs) have attracted increasing attention as the power supply unit for portable/wearable electronics. Carbon nanotubes (CNTs) are promising candidate materials for flexible SC electrodes because of their outstanding mechanical property, high electrical conductivity, large surface area, and functionability. CNTs can assemble into various macroscopic materials with different dimensions. In this review, flexible CNT assemblies including 1D fibers, 2D films, and 3D aerogels and sponges are introduced with a focus on the design strategies and fabrication techniques. The recent developments and state-of-the-art applications of such structures as electrodes in flexible SCs are summarized based on device configurations including sandwiched, interdigital in-plane, and cable-type configurations. The flexible CNT-based electrodes have shown great advantages in bendability, stretchability and/or compressibility, as well as a long cycle lifetime. The current challenges and future research opportunities in this field are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.