Abstract
An idea of using pure iron and graphite electrodes was employed for synthesizing carbon nanoparticles by arc discharge in liquid nitrogen. The synthesized products consist of multiwalled carbon nanotubes (MW–CNT), carbon nanohorns (CNH), and carbon nanocapsules (CNC) with core–shell structure. Effect of metallic cathode and discharge current on product structure and yield had been experimentally investigated. Typical evidence of transmission electron microscopic images revealed that under some certain conditions of discharge in liquid nitrogen the synthesized products mainly consisted of CNCs with mean diameter of 50–400 nm. When conventional graphitic electrodes were employed, CNHs with some MW–CNTs were mainly synthesized. Meanwhile, MW–CNTs with diameter of 8–25 nm and length 150–250 nm became less selectively synthesized as cathode deposit under the condition of discharge in liquid nitrogen with higher arc current. The production yield of carbon nanoparticles synthesized by either carbon–carbon or carbon–iron electrodes became also lower with an increase in the arc current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.