Abstract
In this study, carbon nanosheets were deposited on the surface of graphite films for surface modification using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method. The effects of catalyst addition and concentration, growth gas flow rate, and hydrogen plasma pretreatment on the size, morphology, and density of the deposited carbon nanosheets were investigated. These factors influence the deposition results by affecting the nucleation and growth processes of the carbon nanosheets, while the growth process affects their size. The surface morphology and distribution of the carbon nanosheets were characterized using scanning electron microscopy (SEM). Graphite film/aluminum composites were prepared using graphite films modified under different process conditions as reinforcements. The composite prepared with graphite films modified without catalysts showed significant improvement in thermal conductivity, achieving an xy-direction thermal conductivity of 705 W/(m·K) and a z-direction thermal conductivity of 14.8 W/(m·K), both of which are higher than those of unmodified graphite film/aluminum composites. X-ray diffraction (XRD) analysis was conducted to identify the phase composition of the resulting composites and confirm the structural integrity of the reinforcement after processing.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have