Abstract

We investigated the mechanisms and isotope effects associated with the N-dealkylation and N-atom oxidation of substituted N-methyl- and N,N-dimethylanilines to identify isotope fractionation trends for the assessment of oxidations of aromatic N-alkyl moieties by compound-specific isotope analysis (CSIA). In laboratory batch model systems, we determined the C, H, and N isotope enrichment factors for the oxidation by MnO(2) and horseradish peroxidase (HRP), derived apparent (13)C-, (2)H-, and (15)N-kinetic isotope effects (AKIEs), and characterized reaction products. The N-atom oxidation pathway leading to radical coupling products typically exhibited inverse (15)N-AKIEs (up to 0.991) and only minor (13)C- and (2)H-AKIEs. Oxidative N-dealkylation, in contrast, was subject to large normal (13)C- and (2)H-AKIEs (up to 1.019 and 3.1, respectively) and small (15)N-AKIEs. Subtle changes of the compound's electronic properties due to different types of aromatic and/or N-alkyl substituents resulted in changes of reaction mechanisms, rate-limiting step(s), and thus isotope fractionation trends. The complex sequence of electron and proton transfers during the oxidative transformation of substituted aromatic N-alkyl amines suggests highly compound- and mechanism-dependent isotope effects precluding extrapolations to other organic micropollutants reacting along the same degradation pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.