Abstract

The quality of interfacial interaction is dictated by the surface chemistry of the carbon fibres and the composition of the matrix. The composition of poly(vinylidene fluoride) (PVDF) was modified by the addition of maleic anhydride grafted PVDF. The surface properties of the various matrix formulations were characterised by contact angle and electrokinetic measurements. Carbon fibres were modified by industrial electrochemical oxidation and oxidation in nitric acid, or the use of a traditional epoxy-sizing of industrially oxidised fibres. The surface composition, morphology and wetting behaviour of the carbon fibres was characterised. The interaction between modified PVDF and the carbon fibres was studied by direct contact angle measurements between PVDF melt on single carbon fibres and by single fibre pull-out tests. The best wetting and adhesion behaviour was achieved between PVDF containing 5 ppm grafted maleic anhydride (MAH) and epoxy-sized carbon fibres. The addition of MAH-grafted PVDF to the unmodified PVDF caused the apparent interfacial shear strength to increase by 184%. The apparent interfacial shear strength of this fibre–matrix combination allowed for the utilisation of 100% of the yield tensile strength of PVDF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.