Abstract

Nitrogen losses from croplands contribute to impairment of water bodies. This laboratory experiment evaluated various C sources for use in a denitrifying bioreactor, a conservation practice designed to reduce N losses. The nitrate removal efficiency of candidate treatments (corn cobs [CC], corn cobs with modified coconut coir [CC+MC], corn cobs with modified coconut coir and modified macadamia shell biochar [CC+MC+MBC], wood chips [WC], wood chips with hardwood biochar [WC+BC], and wood chips with continuous sodium acetate addition [WC+A]) were tested with up-flow direction. Effluent was sampled after a repeated weekly flow regime with hydraulic residence times of 1.5, 8, 12, and 24 h. Column temperatures were 15°C for 14 wk (warm), 5°C for 13 wk (cold), and again 15°C for 7 wk (rewarm). Cumulative nitrate N load reduction was greatest for WC+A (80, 80, and 97% during the warm, cold, and rewarm runs, respectively). Corn cob treatments (CC, CC+MC, and CC+MC+MBC) had the second greatest cumulative load reductions for all three temperature experiments, and WC and WC+BC had the lowest performance under these conditions. The nitrate removal rate was optimum at the 1.5-h hydraulic residence time for the WC+A treatment: 43, 30, and 121 g N m d for the warm, cold, and rewarm runs, respectively. Furthermore, acetate addition greatly improved wood chip performance and could be used to enhance nitrate N removal under the cold and high-flow-rate conditions of springtime drainage for the north-central United States.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.