Abstract

BackgroundThe terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere. This study compares diurnal and seasonal estimates of CO2 fluxes from three contrasting ecosystems, a grassland, a mixture of fallow and cropland, and nature reserve in the Sudanian Savanna and relate them to water availability and land use characteristics.ResultsOver the study period, and for the three study sites, low soil moisture availability, high vapour pressure deficit and low ecosystem respiration were prevalent during the dry season (November to March), but the contrary occurred during the rainy season (May to October). Carbon uptake predominantly took place in the rainy season, while net carbon efflux occurred in the dry season as well as the dry to wet and wet to dry transition periods (AM and ND) respectively. Carbon uptake decreased in the order of the nature reserve, a mixture of fallow and cropland, and grassland. Only the nature reserve ecosystem at the Nazinga Park served as a net sink of CO2, mostly by virtue of a several times larger carbon uptake and ecosystem water use efficiency during the rainy season than at the other sites. These differences were influenced by albedo, LAI, EWUE, PPFD and climatology during the period of study.ConclusionThese results suggest that land use characteristics affect plant physiological processes that lead to flux exchanges over the Sudanian Savanna ecosystems. It affects the diurnal, seasonal and annual changes in NEE and its composite signals, GPP and RE. GPP and NEE were generally related as NEE scaled with photosynthesis with higher CO2 assimilation leading to higher GPP. However, CO2 effluxes over the study period suggest that besides biomass regrowth, other processes, most likely from the soil might have also contributed to the enhancement of ecosystem respiration.

Highlights

  • The terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere

  • Over the years many EC experiments have been performed in West Africa within various research projects such as the Sahelian Energy Balance EXperiment (SEBEX, [8]), Hydrological and Atmospheric Pilot Experiment-Sahel in Niger (HAPEX-Sahel, [9,10,11]), the African Monsoon Multidisciplinary Analyses (AMMA) project [12], and the CARBOAFRICA project [13], the network of eddy covariance stations in West Africa is still very sparse compared to the network in North America, Europe and Asia, [14]

  • General meteorology The meteorological conditions over the study areas were evaluated at each individual EC site

Read more

Summary

Introduction

The terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere. The terrestrial ecosystem in West Africa is made up of several types of savannas which have exhibited strong diurnal and seasonal variability in their CO2 fluxes, an indication of how the carbon budget can be affected by. The contributions of the West African savanna ecosystems to the global carbon budgets as well as factors influencing their impact on the temporal and spatial variation of the terrestrial carbon uptake and emission are still highly uncertain. The main reason is that carbon dynamics vary for different ecosystems, depending on the climate, land management and further factors. Another reason is that many former measurement experiments were mostly performed for short periods, e.g. for a specific season or for several months and for a few selected sites [15,16]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.