Abstract

In a box model synthesis of Southern Ocean and North Atlantic mechanisms for lowering CO2 during ice ages, the CO2 changes are parsed into their component geochemical causes, including the soft‐tissue pump, the carbonate pump, and whole ocean alkalinity. When the mechanisms are applied together, their interactions greatly modify the net CO2 change. Combining the Antarctic mechanisms (stratification, nutrient drawdown, and sea ice cover) within bounds set by observations decreases CO2 by no more than 36 ppm, a drawdown that could be caused by any one of these mechanisms in isolation. However, these Antarctic changes reverse the CO2 effect of the observed ice age shoaling of North Atlantic overturning: in isolation, the shoaling raises CO2 by 16 ppm, but alongside the Antarctic changes, it lowers CO2 by an additional 13 ppm, a 29 ppm synergy. The total CO2 decrease does not reach 80 ppm, partly because Antarctic stratification, Antarctic sea ice cover, and the shoaling of North Atlantic overturning all strengthen the sequestration of alkalinity in the deepest ocean, which increases CO2 both by itself and by decreasing whole ocean alkalinity. Increased nutrient consumption in the sub‐Antarctic causes as much as an additional 35 ppm CO2 decrease, interacting minimally with the other changes. With its inclusion, the lowest ice age CO2 levels are within reach. These findings may bear on the two‐stepped CO2 decrease of the last ice age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.