Abstract

Carbon Capture and Storage by mineralisation aims to reduce carbon dioxide emissions (CO2) by reacting CO2 with rocks rich in magnesium or calcium oxide and producing solid mineral carbonates, which can provide safe storage capacity. Recently, indirect mineral carbonation by pH swing mineralisation processes that use recyclable ammonium salts has shown promising results, but the process needs to be optimised. For example, the feasibility of this process in the presence of a mixture of NH3-salts has not been demonstrated. Accordingly, carbonation of rocks rich in magnesium and a mixture of NH4HCO3 and (NH4)2CO3 under different temperatures was investigated to reproduce a real scenario from an ammonia capture process. The highest ‘carbonation efficiency’ (expressed as the conversion of Mg ions to hydromagnesite) was 93.5% at 80°C and 1:4:3 as Mg:NH4 salts:NH3 molar ratio, while the ‘total CO2 captured’ was 62.6% under the same conditions, indicating that the process in presence of ammonium salts mixture is feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.