Abstract
Wood carbon (C) concentration is a key wood trait that varies widely among tree species, but our understanding of the factors governing this trait is limited, despite reason to hypothesize that wood C varies systematically across environmental gradients. We compiled a novel database of 1145 geo-referenced wood C observations from 415 species, to elucidate climate correlates of wood C concentrations, and test if these relationships differ across tissue types and major taxonomic divisions (i.e. angiosperms vs gymnosperms). Climate variables, including mean annual temperature (MAT) and precipitation and temperature seasonality, are significantly correlated with wood C concentrations. Relationships between wood C and these variables differ across tissue types and taxonomic divisions, yet there is a negative relationship between wood C and MAT that exists across all tissues and species groups. Wood C concentrations in trees are influenced by climate, with experimental evidence (albeit scant) indicating that climate-driven changes in lignin concentrations likely govern these relationships. Our study presents among the first lines of evidence indicating that wood C concentrations are correlated with environmental conditions, thereby enhancing our understanding of the potential adaptive significance of wood C variation in trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.