Abstract

It is pointed out that isotope fractionation as a result of chemical reactions is due to the small zero-point energy differences between reactants and products of isotopically distinct species. Only at temperatures near absolute zero does this energy difference become significant. Favorable conditions for isotope fractionation on the considered basis exist in space within dense interstellar clouds. Temperatures of approximately 10 K may occur in these clouds. Under such conditions, ion-molecule reactions have the potential to distribute isotopes of hydrogen, carbon, oxygen unequally among the interstellar molecules. The present investigation makes use of a detailed model of the time-dependent chemistry of dense interstellar clouds to study cosmological isotope fractionation. Attention is given to fractionation chemistry and the calculation of rate parameters, the isotope fractionation results, and a comparison of theoretical results with observational data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.