Abstract

Agriculture plays an important role in greenhouse gases (GHGs) emissions and reactive nitrogen (Nr) loss. Therefore, carbon (C) and nitrogen (N) footprint reductions in agro-ecosystem have become an increasingly hot topic in global climate change and agricultural adaptation. The objective of this study was to assess the C footprint (CF) and N footprint (NF) of double rice (Oryza sativa L.) production using life cycle assessment method in Southern China. The results showed that fertilizer application and farm machinery operation contributed the most to both GHGs and Nr emissions from agricultural inputs in the double rice production process. The CF for the early, late, and double rice was 0.86, 0.83, and 0.85kgCO2-eqkg−1year−1 at yield-scale, respectively. In addition, the NF was 10.47, 10.89, and 10.68gN-eqkg−1year−1 at yield-scale for the early, late and double rice, respectively. The largest fraction of CF and NF of double rice was the share of CH4 emission and NH3 volatilization from the paddy field, respectively. Higher CF and NF at yield-scale for Guangdong, Guangxi, and Hainan provinces were presented, compared to the average level in double rice cropping for the region, while smaller than those of Jiangxi, Hubei, and Hunan provinces. Some effective solutions would be favorable toward mitigating climate change and eutrophication of the double rice cropping region in Southern China, including reduction of fertilizer application rates, improvements in farm machinery operation efficiencies, and changes in regional allocation of double rice cropping areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.