Abstract

Electronic emission taking place at the electrodes of high voltage systems and responsible for detrimental breakdown processes is known to be strongly dependent on the cathode surface state and in particular on the presence of carbon contamination. To understand better the effect of carbon adsorption on cathode electronic emission, density functional theory calculations are reported for bulk bcc tungsten as well as for clean and carbon-covered W(100) surfaces for several coverages up to 2ML. Adsorption geometries and energies, work functions and electronic densities of states are analyzed to assess the effect of the presence of adlayers on surface electronic field emission properties. It is shown that flat carbon adlayer deposition on clean W(100) surfaces induces an increase of the surface work function and a decrease of electronic density near the Fermi level. Both factors contribute to reducing electronic field emission levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.