Abstract

Abstract In the present study, the combination of the First-principles density functional theory (DFT) calculations and Monte Carlo (MC) methods are investigated on the structural, magneto-electronic and magneto-caloric properties of the anti-perovskite carbides Mn3XC with X = Sn, Zn. Firstly, the electronic band structure and total/partial density of state of both Mn3SnC and Mn3ZnC are computed and compared to other theoretical and experimental works. Our results reveal that both Mn3SnC and Mn3ZnC structures exhibit a metallic behavior and the valence (VB) and conduction (CB) bands overlap considerably. Additionally, the magnetic and magneto-caloric properties including heat capacity (C), the entropy change (ΔS), adiabatic temperature (ΔT) and the refrigerant capacity (RC) were studied under the magnetic field ranging between 0 and 5 T for both anti-perovskites. Our findings suggest that both anti-perovskite carbide (Mn3SnC and Mn3ZnC) can act as an effective substrate for magnetic refrigeration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.