Abstract

In articular cartilage defect, particularly in arthroscopy, regenerative hydrogels are urgently needed. It should be able to firmly adhere to the cartilage tissue and maintain sufficient mechanical strength to withstand approximately 10 kPa of arthroscopic hydraulic flushing. In this study, we report a carbene-mediated ultra adhesive hybrid hydrogel paints for arthroscopic cartilage repair, which combined the photo initiation of double crosslinking system with the addition of diatomite, as a further reinforcing agent and biological inorganic substances. The double network consisting of ultraviolet initiated polymerization of hyaluronic acid methacrylate (HAMA) and carbene insertion chemistry of diazirine-grafted gelatin (GelDA) formed an ultra-strong adhesive hydrogel paint (H2G5DE). Diatomite helped the H2G5DE hydrogel paint firmly adhere to the cartilage defect, withstanding nearly 100 kPa of hydraulic pressure, almost 10 times that in clinical arthroscopy. Furthermore, the H2G5DE hydrogel supported cell growth, proliferation, and migration, thus successfully repairing cartilage defects. Overall, this study demonstrates a proof-of-concept of ultra-adhesive polysaccharide hydrogel paints, which can firmly adhere to the articular cartilage defects, can resist continuous hydraulic pressure, can promote effective cartilage regeneration, and is very suitable for minimally invasive arthroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.