Abstract

Visible-light-driven CO2 photoreduction with H2 O to value-added chemicals in high efficiency and selectivity is significant but challenging. Herein, a series of carbazolic conjugated organic polymers (CB-COPs) with electron donor-acceptor (D-A) structures were prepared, which showed high efficiency for visible-light-driven photocatalytic reduction of CO2 with H2 O in a solid-gas mode, affording CO as the exclusive carbonaceous product. Especially, CB-COP-mpd derived from 3,5-di(9H-carbazol-9-yl)pyridine exhibited the highest CO evolution rate up to 191.46 μmol g-1 h-1 with a selectivity of 100 %. Mechanism studies showed that carbazolyl is a promising electron donor candidate for constructing CB-COPs with D-A structures, capable of improving the catalytic efficiency and suppressing H2 generation. The acceptor building block with excessive electron withdrawing capability was favorable to H2 O adsorption, thus resulting in the generation of H2 . This work provides new insights for designing COPs photocatalysts for CO2 photocatalytic reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.