Abstract

The dinucleotide carbanicotinamide adenine dinucleotide (carba-NAD), in which a 2,3-dihydroxycyclopentane ring replaces the beta-D-ribonucleotide ring of the nicotinamide ribonucleoside moiety of NAD, has been synthesized and characterized enzymologically. The synthesis begins with the known 1-aminoribose analogue (+/-)-4 beta-amino-2 alpha,3 alpha-dihydroxy-1 beta-cyclopentanemethanol. The pyridinium ring is first introduced and the resultant nucleoside analogue specifically 5'-phosphorylated. Coupling the racemic carbanicotinamide 5'-mononucleotide with adenosine 5'-monophosphate produces two diastereomeric carba-NAD analogues which are chromatographically separable. Only one diastereomer is a substrate for alcohol dehydrogenase and on this basis is assigned a configuration analogous to D-ribose. The reduced dinucleotide carba-NADH was characterized by fluorescence spectroscopy and found to adopt a "stacked" conformation similar to that of NADH. The analogue is reduced by both yeast and horse liver alcohol dehydrogenase with Km and Vmax values for the analogue close to those observed for NAD. Carba-NAD is resistant to cleavage by NAD glycohydrolase, and the analogue has been demonstrated to noncovalently inhibit the soluble NAD glycohydrolase from Bungarus fasciatus venom at low concentrations (less than or equal to 100 microM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.