Abstract

The connected and automated vehicle (CAV) is regarded as an effective way to improve traffic efficiency and safety, which can utilize vehicle-to-vehicle (V2V) communication technology to obtain real-time status information from multiple preceding vehicles. In view of the car-following characteristic of CAV in a V2V communications environment, an extended car-following model AHT-FVD is proposed which takes both average headway and electronic throttle angle difference into account. The stability of this model is examined via linear stability analysis. It is found that the proposed model has a larger stability region than both the full velocity difference (FVD) model and throttle-based FVD (T-FVD) model. Namely, this AHT-FVD model can effectively stabilize traffic flow and alleviate traffic congestion in theory. Moreover, a series of numerical simulations are carried out to explore how average headway together with electronic throttle angle difference influences the stability of traffic flow. Simulation results show that increasing either the average headway weight or the electronic throttle angle difference control signal coefficients can yield higher traffic flow stability. Simulation result is highly consistent with theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.