Abstract

In this study, gaseous flow through a micro/nano-channel is investigated via a novel two relaxation time lattice Boltzmann method. In this method, the slip velocity at the fluid-solid interface is realized by defining the free relaxation parameter. Furthermore, in order to capture the non-linear phenomena associated with the Knudsen layer, the wall function correction is employed. To this respect, different available wall functions are implemented. The objective of the study is to provide a comparative study on the accuracy, range of applicability and computational efficiency of these wall functions in a wide range of Knudsen numbers. The results of the present study are compared against direct simulation Mont Carlo and information preservation data. It is found that only a few of the implemented wall functions are capable of predicting the flow behavior with reasonable accuracy, particularly when the Knudsen number lies in the transition flow regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.