Abstract

Survival of tissue engineered constructs after implantation depends on proper vascularization. The differentiation of endothelial cells into mature microvasculature requires dynamic interactions between cells, scaffold, and growth factors, which are difficult to recapitulate in artificial systems. Previously, photocrosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels displaying collagen mimetic peptides (CMPs), dubbed PEGDA‐CMP, that can be further conjugated with bioactive molecules via CMP‐CMP triple helix hybridization were reported. Here, it is shown that a bifunctional peptide featuring pro‐angiogenic domain mimicking vascular endothelial growth factor (VEGF) and a collagen mimetic domain that can fold into a triple helix conformation can hybridize with CMP side chains of the PEGDA‐CMP hydrogel, which results in presentation of insoluble VEGF‐like signals to endothelial cells. Presentation of VEGF‐like signals on the surface of micropatterned scaffolds in this way transforms cells from a quiescent state to elongated and aligned phenotype suggesting that this system could be used to engineer organized microvasculature. It is also shown that the pro‐angiogenic peptide, when applied topically in combination with modified dextran/PEGDA hydrogels, can enhance neovascularization of burn wounds in mice demonstrating the potential clinical use of CMP‐mediated matrix‐bound bioactive molecules for dermal injuries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.