Abstract

For accurate micro-scale quantification of a specific protein in biological fluids, immunoaffinity chromatography (IAC) and isoelectric focusing (IEF) were combined in a single fused-silica capillary. The inner wall of the capillary was coated with an anti-E-tag antibody at the inlet side to form an IAC column, and polydimethylacrylamide, a neutral polymer, at the outlet side to form the capillary for IEF. After loading a sample, the whole capillary was filled with a carrier ampholyte solution. An anode solution, an acid, was then introduced to fill only the IAC column segment. Focusing was started with a pressure that balances with the electroosmotic flow produced in the acidified IAC column. Fluorescence-labeled recombinant Fab with an E-tag spiked at 16 pM to 10 nM in 50% serum was separated and detected with high precision. The coupling principle allows rapid and high-resolution IEF analysis of a protein in a biological sample without any loss of the immunoaffinity captured protein.

Highlights

  • For accurate micro-scale quantification of a specific protein in biological fluids, immunoaffinity chromatography (IAC) and isoelectric focusing (IEF) were combined in a single fused-silica capillary

  • The need for a combination is because immunochemical detection alone could be affected by false signals, and electrophoretic separation alone is not enough to detect a protein that is present at very low concentration in complex biological samples

  • When rFab, which is E-tagged and labeled with tetramethylrhodamine, at 100 nM was applied on the streptavidin-immobilized column at a linear flow rate of 6.0 cm/min for 15 min, which corresponds to an imaginary sample plug-length of 90 cm and a volume of 1.8 μL, a plateau of the fluorescence signal was observed, and no fluorescence material was eluted by subsequent irrigation with 100 mM phosphoric acid (Fig. 2, blue broken line)

Read more

Summary

Introduction

For accurate micro-scale quantification of a specific protein in biological fluids, immunoaffinity chromatography (IAC) and isoelectric focusing (IEF) were combined in a single fused-silica capillary. The inner wall of the capillary is coated with an iminodiacetate-derivative, poly(3-N,N-dicarboxymethylamino-2-hydroxypropyl methacrylate), at the inlet side and polydimethylacrylamide (PDMA) at the outlet side The former coating holds nickel ions that act as an affinity ligand for hexahistidine (6xHis)-tagged proteins, and the latter coating suppresses electroosmotic flow (EOF) in a fused-silica capillary, providing a suitable environment for IEF. The affinity column segment due to the counteracting EOF and pressure-driven flow, but this turmoil does not extend to the neutral polymer coated capillary (Fig. 1) The merits of this unified separation system are: (1) a sample volume larger than the capillary volume can be loaded; (2) salts and unrelated highly abundant proteins that may compromise IEF separation can be removed; (3) the whole proteins that were captured in the affinity column can be analyzed by CIEF without loss; and (4) CIEF is performed under optimal conditions to achieve high resolution separation without any compromise

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.