Abstract

We consider the problem of capillary imbibition into an axisymmetric tube for which the tube radius decreases in the direction of increasing imbibition. For tubes with constant radius, imbibition is described by Washburn's law (referred to here as the BCLW law to recognize the contributions of Bell, Cameron, and Lucas that predate Washburn). We show that imbibition into tubes with a power-law relationship between the radius and axial position generally occurs more quickly than imbibition into a constant-radius tube. By a suitable choice of the shape exponent, it is possible to decrease the time taken for the liquid to imbibe from one position to another by a factor of 2 compared to the BCLW law. We then show that a further small decrease in the imbibition time may be obtained by using a tube consisting of a cylinder joined to a cone of 3 times the cylinder length. For a given inlet radius, this composite shape attains the minimum imbibition time possible. We confirm our theoretical results with experiments on the tips of micropipettes and discuss the possible significance of these results for the control of liquid motion in microfluidic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.